Identifiability and transportability in dynamic causal networks
نویسندگان
چکیده
منابع مشابه
Identifiability and Transportability in Dynamic Causal Networks
In this paper we propose a causal analog to the purely observational Dynamic Bayesian Networks, which we call Dynamic Causal Networks. We provide a sound and complete algorithm for identification of Dynamic Causal Networks, namely, for computing the effect of an intervention or experiment, based on passive observations only, whenever possible. We note the existence of two types of confounder va...
متن کاملCausal Transportability with Limited Experiments
We address the problem of transferring causal knowledge learned in one environment to another, potentially different environment, when only limited experiments may be conducted at the source. This generalizes the treatment of transportability introduced in [Pearl and Bareinboim, 2011; Bareinboim and Pearl, 2012b], which deals with transferring causal information when any experiment can be condu...
متن کاملm-Transportability: Transportability of a Causal Effect from Multiple Environments
We study m-transportability, a generalization of transportability, which offers a license to use causal information elicited from experiments and observations in m ≥ 1 source environments to estimate a causal effect in a given target environment. We provide a novel characterization of mtransportability that directly exploits the completeness of docalculus to obtain the necessary and sufficient ...
متن کاملIdentifiability in Causal Bayesian Networks: A Sound and Complete Algorithm
This paper addresses the problem of identifying causal effects from nonexperimental data in a causal Bayesian network, i.e., a directed acyclic graph that represents causal relationships. The identifiability question asks whether it is possible to compute the probability of some set of (effect) variables given intervention on another set of (intervention) variables, in the presence of non-obser...
متن کاملIdentifiability of linear dynamic networks
Dynamic networks are structured interconnections of dynamical systems (modules) driven by external excitation and disturbance signals. In order to identify their dynamical properties and/or their topology consistently from measured data, we need to make sure that the network model set is identifiable. We introduce the notion of network identifiability, as a property of a parameterized model set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Data Science and Analytics
سال: 2016
ISSN: 2364-415X,2364-4168
DOI: 10.1007/s41060-016-0028-8